

GSFC · 2015

Some General Principles in Cryogenic Design, Implementation, and Testing

Michael DiPirro (with material from Rob Boyle) NASA/Goddard Space Flight Center

Outline

- Opening remarks
- The role of thermodynamics
- General design principles
- Properties of materials
- Producing "cold"
- Cryo-cooling in space
- Instrumentation
- Heat switches
- Superconductivity
- Cooling Below 1 K

What is "Cryogenic"

- For the purposes of this talk, T < 100 K is cryogenic
 - Air liquefies
 - Certain metals and ceramics become superconducting
 - Out of the realm of our normal experience (arctic conditions are not cryogenic)
 - Heat capacities decrease from the Dulong & Petit (3/2 R) value
 - In general the physics becomes different from room temperature

The Logarithmic Temperature Scale

- Note use of absolute scale
- Each decade corresponds to different physics and different solutions to design problems
 - 100-1000 K is the range we are used to
 - 10-100 K, air liquefies and solidifies, High temperature superconductivity
 - 1-10 K, low temperature superconductivity, liquid helium
- Note that properties are not "constant" any more, so concepts like "average" temperature must take this into account
- When analyzing a system, heat flow margin will take the place of temperature margin

Thermomdynamics is a Serious Subject!

Robert Boyle 1627-1691

Benjamin Thompson Count Rumford 1753-1814

Nicolas Léonard Sadi Carnot 1796-1832

J. Willard Gibbs 1839-1903

Heike Kamerlingh Onnes 1853-1926

Max Planck 1858-1947

James P. Joule 1818-1889

Rudolf Clauxius 1822-1888

Gustav Robert Kirchhoff 1824-1887

Walther Nernst 1864-1941

Constantin Carathéodory 1873-1950

Albert Einstein 1879-1955

William Thomson Lord Kelvin 1824-1907

Clerk Maxwell 1831-1879

Peter Debye 1884-1966

F. E. Simon 1893-1956

The Laws of Thermodynamics

- First Law of Thermodynamics (Conservation of Energy)
 - Energy in = Work out
 - you can't get something for nothing
- Second Law of Thermodynamics (Entropy)
 - ∂ Entropy ≥ (∂ Energy/Temperature)
 - you can't break even
- Third Law of Thermodynamics (Absolute Zero)
 - Entropy -> 0 as Absolute Temperature -> 0
 - there's no use trying

Thermodynamics

- Thermodynamics is key to understanding cryogenic processes
- Refrigeration
 - 1st and 2nd laws of thermodynamics
- Approach to Absolute Zero
 - 3rd law of thermodynamics

Staging

- Intercept heat in stages to reject heat at the highest possible temperature
- In general heat rejection difficulty goes as T⁻²

Design: The "KISS" Principle

- Start with a design that can be calculated using "back of the envelope" methods
 - Make all components easy to analyze
 - Analysis effort should not be underestimated!
 - The fewer items that are crucial in a design the better
 - Simpler analysis
 - Simpler construction
 - Simpler validation

Example

- GSE motor driven photogrammetry cameras for JWST
 - Original concept: camera housing to cool passively through incidental contact in motor and gears
 - Very difficult to model and verify performance
 - Became an extra potential heat source that had to be tracked
 - Solution: make system "deterministic" by using thermal straps

Estimating by Previous Example

- Previous systems have been made that can be used as a "jumping off" point for a thermal design or estimating cooling requirements
 - Various parametrizations have been used to give an analog expression to these extrapolations or interpolations of actual systems

Properties of Materials

- Thermal Conductivity
- Thermal Absorptivity and Emissivity
- Strength and Brittleness Properties
- Electrical Conductivity
- Specific Heat
- Gases and Liquids (density & pressure vs. temperature, heat of vaporization and melting, crystal structure, etc.)
 - Example: solid nitrogen has a low temperature change of phase which causes an expansion. This was learned by NICMOS at the cost of a compromised mission

Conductivity Graph

 Thermal conductivity varies greatly between room T and low T

High Purity Metals

 At low temperature electrons have fewer phonons to scatter from, so the thermal conductivity goes up until defects and impurities dominate

RRR = residual resistance ratio
A measure of the purity of the metal
And its crystallinity

Wiedemann-Franz

- Electrons carry the heat in metals
- W-F is a relation between electrical and thermal conductivity

```
\rho = L_0T/K
```

Where ρ = resistivity, T = absolute temperature, K = thermal conductivity, and L₀ = Lorentz constant = 2.44 x 10⁻⁸ V²/K²

Not applicable to superconductors

Emissivity and Absorptivity: Temp. and Wavelength Dependence

- The emissivity of most materials is temperature and wavelength dependent
 - Requires wavelength dependent analysis for radiation which is usually accomplished by creating a few wavelength bands in the analysis software
 - Experience on JWST shows that 3 wavelength bands representing the major "hot" (60 K < "hot" < 300 K) sources provide enough accuracy without greatly increasing model run time

Properties of MLI

The Lockheed Equation

$$Q/A = [(C_sN^{3.56}T_m)/(N_s+1)](T_h-T_c) + [(C_r\varepsilon_{tr})/N_s](T_h^{4.67}-T_c^{4.67})$$

Where Q/A is W/m², Tm is the average of T_h and T_c , N is the layer density in layers per cm, N_s is the total number of layers, ε_{tr} is the surface emissivity, C_s is 2.11e-9, and C_r is 5.39e-10.

- Degradation of MLI at lower T
 - Basically dominated by thru-layer conduction at low T
- Structural MLI
 - Each layer is separated by a well defined spacing and has some structural qualities
- Lateral conduction
 - May be minimized by slitting

DAK Emissivity vs. T

Metals' emissivity follow the Hagen-Reubens relation to first order:

R ~ 1-2[(2
$$\epsilon$$
0 ω)/ σ]0.5

R is the reflectivity, $\epsilon 0$ is the permittivity of vacuum, ω is the frequency of the radiation and σ is the conductivity of the metal surface

But DAK's metal is thin

Suitable Materials for Cryo

- Austenitic stainless steels: 304, 304L, 316, 321, A286
- Aluminum alloys: 6061, 6063, 5083, 2219, 1100
- Copper: OFHC, ETP and phosphorous deoxidized
- Brass
- Fiber reinforced plastics: G –10 and G –11, CFRP
- Niobium & Titanium (frequently used in superconducting RF systems)
- Invar (Ni /Fe alloy)
- Indium (used as an O ring material)
- Kapton and Mylar (used in Multilayer Insulation and as electrical insulation
- Teflon (does not become brittle, but creeps)
- Quartz (used in windows)

Unsuitable Materials for Cryo

- Martensitic stainless steels Undergoes ductile to brittle transition when cooled down.
- Cast Iron also becomes brittle
- Carbon steels also become brittle. Sometimes used in 300 K vacuum vessels but care must be taken that breaks in cryogenic lines do not cause the vacuum vessels to cool down and fail
- Rubber and most plastics
 - Plastic insulated wires are frequently OK as long as the wire is not repeatedly flexed which could lead to cracking of the insulation (check outgassing first)

Gas Conduction-1

Can be bad

- Unwanted thermal shorts in a test
- Failure of the XRS instrument on Astro-E2

Can be good

- Gas gap heat switches
- Aid to speed cool down and warm up
- Can be used as a substitute for a failed heat switch

Gas Conduction-2

Molecular Heat Transfer

- Gas density is lower than mean free path between objects
- Heat transfer depends on the temperature difference but not on the separation distance

JWST example

- To shorten the cool down time from room T (300 K) to 30 K
 helium exchange gas is used (~10⁻² Pa) within the chamber
 - Mean free path is exceeded for 10⁻³ to 100 Pa depending on objects' spacing

ASTRO-H example

- In the EM dewar a heat switch failed open
- To operate the adiabatic demagnetization refrigerator, a method to use ~10⁻³ Pa of gaseous helium to remove the heat of magnetization was used successfully
 - Too much gas causes excessive thermal shorting to warmer components in the dewar

Producing Cold: Cryogens and Cryocoolers

- Mechanical cryocoolers
- LN₂, LHe, etc.
- Supplement through use of intermediate cooling stages
 - Vapor cooling
 - radiators

Producing Low Temperatures in Space

Radiation can only work to ~ 30 K, practically

Radiators in Space

- Some flight heritage at cryogenic temperatures (COBE, Landsat, Cassini/CIRS, MAP, Spitzer)
 - JWST will use radiative cooling
 - Successful test of Subscale Cryo-optical Thermal Testbed in support of ST-9 Large Space Telescope proposal
- Operate from room temperature (and above) to as low as 30 K
 - Depends strongly on mission design
- Passive heat rejection
 - Sunshade/earthshade provides shielding from incoming radiation
 - Radiator with a view of deep space connects to heat source (instrument, optics, part of spacecraft bus) by means of a thermal distribution system
 - Metal conductors
 - Loop heat pipes
 - Requires heaters/thermostats to regulate temperature
- Require stringent controls to meeting thermal budgets
- Spitzer reached 34 K on radiative outer shell
- JWST expects to reach ~26 K on instrument radiators

Different Geometry - JWST Harness Radiator

- 4 stages of isolation to limit the amount of heat flowing from the room temperature electronics (IEC) to the cold instruments (ISIM)
 - Coldest stage is actually only isolator

Dewar Construction

- Dewar must trade mechanical robustness with thermal isolation
- For liquid helium dewars usually have conduction and radiation heat loads roughly the same
- Use vapor cooled shields to intercept heat at higher temperatures

Working with Cryogenic Fluids

In general:

- Low heat of vaporization
- Can be pumped or pressurized to change boiling point
- Can freeze if too cold (except helium)
- Low to zero contact angle, i.e., wets all surfaces
- Represents a large potential energy in a sealed container

IRAS Dewar Launched 1983
First Superfluid He Dewar in Space
(not as large as it appears)

TFAWS 2015 - August 3-7, 2015

The Unique Phase Diagram of ⁴He

Lab Cooler - Gifford McMahon Cycle

- Gifford-McMahon Refrigeration Cycle
 - Regenerator stores heat in compression phase, and releases heat in expansion phase
 - Compress while most of the gas is at warm end, and expand while most of the gas is at the cold end
 - Reverse the phase, and you have an expensive heater!

Cryocoolers for Space Use

- Mass, size, input power, and reliability are drivers
- Reverse Brayton Cycle
- Stirling Cycle
- Pulse Tubes
- Joule/Thomson Coolers

Reverse Brayton Cycle

Turbo alternator removes work from cold stage, therefore increasing cooling

Regenerator Cycle (Stirling and Pulse Tube)

From P. Kittel, "Are P-V and T-S Diagrams Meaningful for Regenerative Coolers?"

Stirling Cycle

- Similar to GM cycle
 - Identical function of regenerator in coldfinger
 - Pressure cycle driven by oscillator rather than tanks, valves and a compressor
 - Phase angle controlled electrically, mechanically, or pneumatically
- Easier to miniaturize than GM

Pulse Tubes

Similar to Stirling cycle

- Identical function of regenerator in coldfinger, pressure cycle driven by oscillator
- Phase angle controlled by resonant gas volume
- Simpler <u>mechanism</u> than Stirling, but a whole new set of gascontrol challenges

Joule Thomson Expansion

 Gas must be precooled and not too high in pressure to produce cooling when expanded isenthalpically

Space Cryocooler Performance

 Roughly T⁻² dependence on input power to cooling power ratio

Instrumentation and What is Important to Measure

- Thermometry, thermometry, thermometry
- Pressure for fluids
 - May be in situ or reading vapor pressure
- Pressure for vacuum
 - Pressure reading depends on temperature
 - $P_A = P_B (T_A/T_B)^{1/2}$
 - For example a pressure gauge on the vacuum wall of a thermal/vacuum chamber will read higher than the actual pressure in a cold shroud

Thermometry

- Select thermometer type based on temperature range
 - Use 4 lead devices where high sensitivity and accuracy are required
 - Remove thermal emfs by reversing current
 - Not possible with diodes
- Self heating can produce erroneous readings in thermistors
 - Function of power and temperature
 - Readout power applied = 10⁻⁹ T²
 - But, higher voltage can be used to obtain higher sensitivity at a cost of accuracy

Thermometry Chart

- Figure of merit for thermisters is 1/R•dR/dT
- Cernox best < 70K
- Pt best for > 70 K
- Si diodes good over wide range
- Thermocouples have very poor sensitivity below 100 K

temperature (K)

Heat Switches-Gas Gap

- Uses closely spaced conductors separated by thermally insulating material
- Gas is admitted to gap or pumped out by heating or cooling an adsorbing material (getter)

Heat Switches-Passive Gas Gap

- Passively Operated Gas Gap Heat Switch
 - Getter is thermally attached to the normally cold end

Heat Switches-Mechanical

- Differential contraction
- Motor driven
- Manual
- Magnetostrictive
- Piezoelectric

Heat Switches - Other

Superconducting

Magnetoresistive

Superconductivity

- Quantum mechanical effect where electrons in certain conductors combine to form "Cooper pairs"
 - Transition point affected by temperature, current density, and magnetic field
- Characterized by zero electrical resistance and drop in thermal conductivity
 - Cooper pairs carry current and pass through the material without interacting
 - May be used for low T heat switch
- Types of superconductors
 - Type I Generally pure metals, T_c < 10 K
 - Also can be used as a magnetic shield
 - Type II Alloys, some pure metals, T_c < 20 K
 - Can remain superconducting in higher fields
 - MgB₂ Magnesium Diboride, T_c ~39 K
 - High Temperature Superconductors (HTS) Ceramics, T_c < 110 K

High Temperature Superconductivity

- Usually a ceramic consisting of RBCO, where R is a rare earth element, for instance YBCO, yttrium barium copper oxide
- Can make large/high field coils
- Joints have small amount of resistance so coil is not "persistent"
- Best performance is for bulk or flat tapes made with a thin film deposition
 - Round wire forms are now being explored

Making Use of Superconductivity

- i²R-free coils for motors and actuators
 - Also proposed for energy storage
- Low thermal conductance high current wiring
- SQUIDs (Superconducting Quantum Interference Devices)

Magnet that produces 3 T with 2 A input

In the Regime of Sub Kelvin Temperatures

Quantum behavior

- ³He has Fermi-Dirac statistics (like electrons) and ⁴He has Bose-Einstein statistics (like photons)
- Helium does not freeze at atm. pressure

• ³He and ⁴He

3He dissolves in 4He, creating an opportunity for cooling

Boundary resistance

- Not thermal contact per se, but a thermal conductance that depends only on surface area
- Due to phonon mismatch across two different solids or phonon mismatch from liquid helium to solid (Kapitza resistance)

Very Low T Conductivity and Specific Heat

Sub Kelvin Refrigeration

- ³He sorption coolers
- Dilution refrigerators
- Adiabatic demagnetization

³He Sorption

- Sorption Coolers use a getter to pump the vapor from a liquid reservoir
 - Getter is recycled by heating and the gas is recondensed by a higher temperature stage

Dilution Refrigeration

- Diluting the lighter isotope ³He, in liquid ⁴He, increases the entropy of the system and therefore cools
- Makes use of the non-zero solubility of ³He in ⁴He even at very low temperatures

Can be made continuous by separating the ³He out of solution at higher temperature and then re-condensing it

Adiabatic Demagnetization

- SdT = MdH takes the place of d(ST) = d(PV) in a cryocooler cycle
- [add in ch. 14 material from Zemansky]
- Adiabatic demagnetization refrigeration follows a very Carnot-like cycle of constant S and constant T
 - Produces efficiencies close to Carnot
 - No moving parts for low temperature ADRs using gas-gap heat switches

Continuous ADR

Biliography

- Spacecraft Thermal Control Handbook, Vol. II
 Cryogenics, Martin Donabedian, Ed., Aerospace Press (2003)
- Cryogenic Engineering, Thomas M. Flynn, CRC Press (2005)

Final Thought

- It has been said that a problem in low temperature physics can eventually be used to measure and achieve even lower temperatures
 - Problems are actually opportunities!